• Editors' Suggestion

High-field metamagnetism in the antiferromagnet CeRh2Si2

W. Knafo, D. Aoki, D. Vignolles, B. Vignolle, Y. Klein, C. Jaudet, A. Villaume, C. Proust, and J. Flouquet
Phys. Rev. B 81, 094403 – Published 3 March 2010

Abstract

A study of the antiferromagnet CeRh2Si2 by torque, magnetostriction, and transport in pulsed magnetic fields up to 50 T and by thermal expansion in static fields up to 13 T is presented. The magnetic field temperature phase diagram of CeRh2Si2, where the magnetic field is applied along the easy axis c, is deduced from these measurements. The second-order phase transition temperature TN and the first-order phase transition temperature T1,2 (=36K and 26 K at zero field, respectively) decrease with increasing field. The field-induced antiferromagnetic-to-paramagnetic borderline Hc, which equals 26 T at 1.5 K, goes from first order at low temperature to second order at high temperature. The magnetic field temperature phase diagram is found to be composed of (at least) three different antiferromagnetic phases. These are separated by the first-order lines H1,2, corresponding to T1,2 at H=0, and H2,3, which equals 25.5 T at 1.5 K. A maximum of the T2-coefficient A of the resistivity is observed at the onset of the high-field polarized regime, which is interpreted as the signature of an enhanced effective mass at the field-induced quantum instability. The magnetic field dependence of the A coefficient in CeRh2Si2 is compared with its pressure dependence, and also with the field dependence of A in the prototypal heavy-fermion system CeRu2Si2.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 23 December 2009

DOI:https://doi.org/10.1103/PhysRevB.81.094403

©2010 American Physical Society

Authors & Affiliations

W. Knafo1, D. Aoki2, D. Vignolles1, B. Vignolle1, Y. Klein1, C. Jaudet1, A. Villaume2, C. Proust1, and J. Flouquet2

  • 1Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UJF-UPS-INSA, 143 Avenue de Rangueil, 31400 Toulouse, France
  • 2Institut Nanosciences et Cryogénie, SPSMS, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 81, Iss. 9 — 1 March 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×