Cohesive and magnetic properties of grain boundaries in bcc Fe with Cr additions

E. Wachowicz, T. Ossowski, and A. Kiejna
Phys. Rev. B 81, 094104 – Published 11 March 2010

Abstract

Structural, cohesive, and magnetic properties of two symmetric Σ3(111) and Σ5(210) tilt grain boundaries (GBs) in pure bcc Fe and in dilute FeCr alloys are studied from first principles. Different concentrations and positions of Cr solute atoms are considered. We found that Cr atoms placed in the GB interstice enhance the cohesion by 0.51.2J/m2. Substitutional Cr in the layers adjacent to the boundary shows anisotropic effect on the GB cohesion: it is neutral when placed in the (111) oriented Fe grains and enhances cohesion by 0.5J/m2 when substituted in the boundary layer of the (210) grains. The strengthening effect of the Cr solute is dominated by the chemical component of the adhesive binding energy. Our calculations show that unlike the free iron surfaces, Cr impurities segregate to the boundaries of the Fe grains. The magnetic moments on GB atoms are substantially changed and their variation correlates with the corresponding relaxation pattern of the GB planes. The moments on Cr additions are two to four times enhanced in comparison with that in a Cr crystal and are antiparallel to the moments on the Fe atoms.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 17 September 2009

DOI:https://doi.org/10.1103/PhysRevB.81.094104

©2010 American Physical Society

Authors & Affiliations

E. Wachowicz, T. Ossowski, and A. Kiejna

  • Institute of Experimental Physics and Interdisciplinary Centre for Materials Modeling, University of Wrocław, Plac M. Borna 9, PL-50-204 Wrocław, Poland

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 81, Iss. 9 — 1 March 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×