• Editors' Suggestion

Direct method for imaging elemental distribution profiles with long-period x-ray standing waves

Vaibhav Kohli, Michael J. Bedzyk, and Paul Fenter
Phys. Rev. B 81, 054112 – Published 19 February 2010

Abstract

A model-independent Fourier-inversion method for imaging elemental profiles from multilayer and total-external reflection x-ray standing wave (XSW) data is developed for the purpose of understanding the assembly of atoms, ions, and molecules at well-defined interfaces in complex environments. The direct-method formalism is derived for the case of a long-period XSW generated by low-angle specular reflection in an attenuating overlayer medium. It is validated through comparison with simulated and experimental data to directly obtain an elemental distribution contained within the overlayer. We demonstrate this formalism by extracting the one-dimensional profile of Ti normal to the surface for a TiO2/Si/Mo trilayer deposited on a Si substrate using the TiKα fluorescence yield measured in air and under an aqueous electrolyte. The model-independent results demonstrate reduced coherent fractions for the in situ results associated with an incoherency of the x-ray beam (which are attributed to fluorescence excitation by diffusely or incoherently scattered x-rays). The uniqueness and limitations of the approach are discussed.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 14 October 2009

DOI:https://doi.org/10.1103/PhysRevB.81.054112

©2010 American Physical Society

Authors & Affiliations

Vaibhav Kohli1,2, Michael J. Bedzyk1,3, and Paul Fenter2

  • 1Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
  • 2Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
  • 3Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 81, Iss. 5 — 1 February 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×