Self-consistent perturbation expansion for Bose-Einstein condensates satisfying Goldstone’s theorem and conservation laws

Takafumi Kita
Phys. Rev. B 80, 214502 – Published 3 December 2009

Abstract

Quantum-field-theoretic descriptions of interacting condensed bosons have suffered from the lack of self-consistent approximation schemes satisfying Goldstone’s theorem and dynamical conservation laws simultaneously. We present a procedure to construct such approximations systematically by using either an exact relation for the interaction energy or the Hugenholtz-Pines relation to express the thermodynamic potential in a Luttinger-Ward form. Inspection of the self-consistent perturbation expansion up to the third order with respect to the interaction shows that the two relations yield a unique identical result at each order, reproducing the conserving-gapless mean-field theory [T. Kita, J. Phys. Soc. Jpn. 74, 1891 (2005)] as the lowest-order approximation. The uniqueness implies that the series becomes exact when infinite terms are retained. We also derive useful expressions for the entropy and superfluid density in terms of Green’s function and a set of real-time dynamical equations to describe thermalization of the condensate.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 6 May 2009

DOI:https://doi.org/10.1103/PhysRevB.80.214502

©2009 American Physical Society

Authors & Affiliations

Takafumi Kita

  • Department of Physics, Hokkaido University, Sapporo 060-0810, Japan

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 80, Iss. 21 — 1 December 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×