Confinement of electrons in size-modulated silicon nanowires

S. Cahangirov and S. Ciraci
Phys. Rev. B 80, 075305 – Published 12 August 2009

Abstract

Based on first-principles calculations we showed that superlattices of periodically repeated junctions of hydrogen-saturated silicon nanowire segments having different lengths and diameters form multiple quantum-well structures. The band gap of the superlattice is modulated in real space as its diameter does and results in a band gap in momentum space which is different from constituent nanowires. Specific electronic states can be confined in either narrow or wide regions of superlattice. The type of the band lineup and hence the offsets of valence and conduction bands depend on the orientation of the superlattice as well as on the diameters of the constituent segments. Effects of the SiH vacancy and substitutional impurities on the electronic and magnetic properties have been investigated by carrying out spin-polarized calculations. Substitutional impurities with localized states near band edges can make modulation doping possible. Stability of the superlattice structure was examined by ab initio molecular-dynamics calculations at high temperatures.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 3 March 2009

DOI:https://doi.org/10.1103/PhysRevB.80.075305

©2009 American Physical Society

Authors & Affiliations

S. Cahangirov1 and S. Ciraci1,2,*

  • 1UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
  • 2Department of Physics, Bilkent University, Ankara 06800, Turkey

  • *ciraci@fen.bilkent.edu.tr

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 80, Iss. 7 — 15 August 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×