Ground state and excitations of quantum dots with magnetic impurities

Ribhu K. Kaul, Denis Ullmo, Gergely Zaránd, Shailesh Chandrasekharan, and Harold U. Baranger
Phys. Rev. B 80, 035318 – Published 24 July 2009

Abstract

We consider an “impurity” with a spin degree of freedom coupled to a finite reservoir of noninteracting electrons, a system which may be realized by either a true impurity in a metallic nanoparticle or a small quantum dot coupled to a large one. We show how the physics of such a spin impurity is revealed in the many-body spectrum of the entire finite-size system; in particular, the evolution of the spectrum with the strength of the impurity-reservoir coupling reflects the fundamental many-body correlations present. Explicit calculation in the strong- and the weak-coupling limits shows that the spectrum and its evolution are sensitive to the nature of the impurity and the parity of electrons in the reservoir. The effect of the finite-size spectrum on two experimental observables is considered. First, we propose an experimental setup in which the spectrum may be conveniently measured using tunneling spectroscopy. A rate equation calculation of the differential conductance suggests how the many-body spectral features may be observed. Second, the finite-temperature magnetic susceptibility is presented, both the impurity and the local susceptibilities. Extensive quantum Monte Carlo calculations show that the local susceptibility deviates from its bulk scaling form. Nevertheless, for special assumptions about the reservoir—the “clean Kondo box” model—we demonstrate that finite-size scaling is recovered. Explicit numerical evaluations of these scaling functions are given, both for even and odd parities and for the canonical and the grand-canonical ensembles.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 30 December 2008

DOI:https://doi.org/10.1103/PhysRevB.80.035318

©2009 American Physical Society

Authors & Affiliations

Ribhu K. Kaul1,2, Denis Ullmo3, Gergely Zaránd4,5, Shailesh Chandrasekharan1, and Harold U. Baranger1

  • 1Department of Physics, Duke University, P.O. Box 90305, Durham, North Carolina 27708, USA
  • 2Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, 76128 Karlsruhe, Germany
  • 3LPTMS, CNRS and Université Paris-Sud, 91405 Orsay, France
  • 4Research Institute of Physics, Technical University Budapest, Budapest H-1521, Hungary
  • 5Institut für Theoretische Feskörperphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 80, Iss. 3 — 15 July 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×