• Editors' Suggestion

Microscopic gauge-invariant theory of the c-axis infrared response of bilayer cuprate superconductors and the origin of the superconductivity-induced absorption bands

Jiří Chaloupka, Christian Bernhard, and Dominik Munzar
Phys. Rev. B 79, 184513 – Published 14 May 2009

Abstract

We report on results of our theoretical study of the c-axis infrared conductivity of bilayer high-Tc cuprate superconductors using a microscopic model involving the bilayer-split (bonding and antibonding) bands. An emphasis is on the gauge invariance of the theory, which turns out to be essential for the physical understanding of the electrodynamics of these compounds. The description of the optical response involves local (intrabilayer and interbilayer) current densities and local conductivities. The local conductivities are obtained using a microscopic theory, where the quasiparticles of the two bands are coupled to spin fluctuations. The coupling leads to superconductivity and is described at the level of generalized Eliashberg theory. Also addressed is the simpler case of quasiparticles coupled by a separable and nonretarded interaction. The gauge invariance of the theory is achieved by including a suitable class of vertex corrections. The resulting response of the model is studied in detail and an interpretation of two superconductivity-induced peaks in the experimental data of the real part of the c-axis conductivity is proposed. The peak around 400cm1 is attributed to a collective mode of the intrabilayer regions, which is an analog of the Bogolyubov-Anderson mode playing a crucial role in the theory of the longitudinal response of superconductors. For small values of the bilayer splitting, its nature is similar to that of the transverse plasmon of the phenomenological Josephson superlattice model. The peak around 1000cm1 is interpreted as a pair-breaking feature that is related to the electronic coupling through the spacing layers separating the bilayers.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
8 More
  • Received 11 February 2009

DOI:https://doi.org/10.1103/PhysRevB.79.184513

©2009 American Physical Society

Authors & Affiliations

Jiří Chaloupka1,*, Christian Bernhard2, and Dominik Munzar1

  • 1Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
  • 2Department of Physics and Fribourg Center for Nanomaterials, Chemin du Musèe 3, CH-1700 Fribourg, Switzerland

  • *chaloupka@physics.muni.cz

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 79, Iss. 18 — 1 May 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×