Extinction of quasiparticle interference in underdoped cuprates with coexisting order

Brian M. Andersen and P. J. Hirschfeld
Phys. Rev. B 79, 144515 – Published 20 April 2009

Abstract

Scanning tunneling spectroscopy (STS) measurements [Y. Kohsaka et al., Nature (London) 454, 1072 (2008)] have shown that dispersing quasiparticle interference (QPI) peaks in Fourier-transformed conductance maps disappear as the bias voltage exceeds a certain threshold corresponding to the coincidence of the contour of constant quasiparticle energy with the period-doubled (e.g., antiferromagnetic) zone boundary. Here we show that this may be caused by coexisting order present in the d-wave superconducting phase. We show explicitly how QPI peaks are extinguished in the situation with coexisting long-range spin-density wave order and discuss the connection with the more realistic case where short-range order is created by quenched disorder. Since it is the localized QPI peaks rather than the underlying antinodal states themselves which are destroyed at a critical bias, our proposal resolves a conflict between STS and photoemission spectroscopy regarding the nature of these states. We also study the momentum-summed density of states in the coexisting phase and show how the competing order produces a kink inside the “V”-shaped d-wave superconducting gap in agreement with recent STS measurements [J. W. Alldredge et al., Nat. Phys. 4, 319 (2008)].

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 24 November 2008

DOI:https://doi.org/10.1103/PhysRevB.79.144515

©2009 American Physical Society

Authors & Affiliations

Brian M. Andersen1 and P. J. Hirschfeld2

  • 1Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
  • 2Department of Physics, University of Florida, Gainesville, Florida 32611-8440, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 79, Iss. 14 — 1 April 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×