Single-crystal growth, crystallography, magnetic susceptibility, heat capacity, and thermal expansion of the antiferromagnetic S=1 chain compound CaV2O4

A. Niazi, S. L. Bud’ko, D. L. Schlagel, J. Q. Yan, T. A. Lograsso, A. Kreyssig, S. Das, S. Nandi, A. I. Goldman, A. Honecker, R. W. McCallum, M. Reehuis, O. Pieper, B. Lake, and D. C. Johnston
Phys. Rev. B 79, 104432 – Published 27 March 2009

Abstract

The compound CaV2O4 contains V+3 cations with spin S=1 and has an orthorhombic structure at room temperature containing zigzag chains of V atoms running along the c axis. We have grown single crystals of CaV2O4 and report crystallography, static magnetization, magnetic susceptibility χ, ac magnetic susceptibility, heat capacity Cp, and thermal expansion measurements in the temperature T range of 1.8–350 K on the single crystals and on polycrystalline samples. An orthorhombic-to-monoclinic structural distortion and a long-range antiferromagnetic (AF) transition were found at sample-dependent temperatures TS108145K and TN5176K, respectively. In two annealed single crystals, another transition was found at 200K. In one of the crystals, this transition is mostly due to V2O3 impurity phase that grows coherently in the crystals during annealing. However, in the other crystal the origin of this transition at 200 K is unknown. The χ(T) shows a broad maximum at 300K associated with short-range AF ordering and the anisotropy of χ above TN is small. The anisotropic χ(T0) data below TN show that the (average) easy axis of the AF magnetic structure is the b axis. The Cp(T) data indicate strong short-range AF ordering above TN, consistent with the χ(T) data. We fitted our χ data by a J1J2 S=1 Heisenberg chain model, where J1(J2) is the (next)-nearest-neighbor exchange interaction. We find J1230K and surprisingly, J2/J10 (or J1/J20). The interaction J between these S=1 chains leading to long-range AF ordering at TN is estimated to be J/J10.04.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
17 More
  • Received 23 December 2008

DOI:https://doi.org/10.1103/PhysRevB.79.104432

©2009 American Physical Society

Authors & Affiliations

A. Niazi1,*, S. L. Bud’ko1,2, D. L. Schlagel3, J. Q. Yan3, T. A. Lograsso3, A. Kreyssig1,2, S. Das1,2, S. Nandi1,2, A. I. Goldman1,2, A. Honecker4, R. W. McCallum3, M. Reehuis5,6, O. Pieper7,8, B. Lake7,8, and D. C. Johnston1,2

  • 1Ames Laboratory, Ames, Iowa 50011, USA
  • 2Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
  • 3Materials and Engineering Physics Program, Ames Laboratory, Ames, Iowa 50011, USA
  • 4Institut für Theoretische Physik, Universität Göttingen, D-37077 Göttingen, Germany
  • 5Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Glienicker Straße 100, 14109 Berlin, Germany
  • 6Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
  • 7Hahn-Meitner-Institut, Glienicker Str. 100, D-14109 Berlin, Germany
  • 8Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany

  • *Present address: Department of Physics, Jamia Millia Islamia, New Delhi 110025, India.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 79, Iss. 10 — 1 March 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×