• Editors' Suggestion

Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals

B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. O. Wehling, and A. I. Lichtenstein
Phys. Rev. B 77, 205112 – Published 15 May 2008

Abstract

The description of realistic strongly correlated systems has recently advanced through the combination of density functional theory in the local density approximation (LDA) and dynamical mean field theory (DMFT). This LDA+DMFT method is able to treat both strongly correlated insulators and metals. Several interfaces between LDA and DMFT have been used, such as (Nth order) linear muffin-tin orbitals or maximally localized Wannier functions. Such schemes are, however, either complex in use or additional simplifications are often performed (i.e., the atomic sphere approximation). We present an alternative implementation of LDA+DMFT, which keeps the precision of the Wannier implementation, but which is lighter. It relies on the projection of localized orbitals onto a restricted set of Kohn–Sham states to define the correlated subspace. The method is implemented within the projector augmented wave and within the mixed-basis pseudopotential frameworks. This opens the way to electronic structure calculations within LDA+DMFT for more complex structures with the precision of an all-electron method. We present an application to two correlated systems, namely, SrVO3 and β-NiS (a charge-transfer material), including ligand states in the basis set. The results are compared to calculations done with maximally localized Wannier functions, and the physical features appearing in the orbitally resolved spectral functions are discussed.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
8 More
  • Received 28 January 2008

DOI:https://doi.org/10.1103/PhysRevB.77.205112

©2008 American Physical Society

Authors & Affiliations

B. Amadon1, F. Lechermann2, A. Georges3, F. Jollet1, T. O. Wehling2, and A. I. Lichtenstein2

  • 1Département de Physique Théorique et Appliquée, CEA, Bruyères-le-Châtel, 91297 Arpajon, Cedex, France
  • 2I. Institut für Theoretische Physik, Universität Hamburg, D-20355 Hamburg, Germany
  • 3Centre de Physique Théorique, École Polytechnique, 91128 Palaiseau, Cedex, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 20 — 15 May 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×