Entropy and entanglement in quantum ground states

M. B. Hastings
Phys. Rev. B 76, 035114 – Published 19 July 2007

Abstract

We consider the relationship between correlations and entanglement in gapped quantum systems, with application to matrix product state representations. We prove that there exist gapped one-dimensional local Hamiltonians such that the entropy is exponentially large in the correlation length, and we present strong evidence supporting a conjecture that there exist such systems with arbitrarily large entropy. However, we then show, under an assumption on the density of states which is believed to be satisfied by many physical systems such as the fractional quantum Hall effect, that an efficient matrix product state representation of the ground state exists in any dimension. Finally, we comment on the implications for numerical simulation.

  • Received 8 January 2007

DOI:https://doi.org/10.1103/PhysRevB.76.035114

©2007 American Physical Society

Authors & Affiliations

M. B. Hastings

  • Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 76, Iss. 3 — 15 July 2007

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×