Gain and recombination dynamics of quantum-dot infrared photodetectors

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi
Phys. Rev. B 74, 205321 – Published 17 November 2006

Abstract

The high photoconductive gain observed in semiconductor quantum dot infrared detectors (QDIPs) constitutes one of the most exciting recent topics in nanotechnology. In this paper we present a theory of diffusion and recombination in QDIPs which is an attempt to explain the recently reported values of gain in these devices. We allow the kinetics to encompass both the diffusion and capture rate limited regimes of carrier relaxation using rigorous random walk and diffusion methods. The photoconductive gains are calculated and compared with the experimental values obtained from InGaAsInGaPGaAs and InAsInP QDIPs using the generation-recombination noise analysis. It is found that the gain can indeed exhibit a broad range of values, including up to several thousands, depending on the bias and the type of material investigated. We also predict the photocurrent transients, and relate them to recent experiments using terahertz pulse spectroscopy.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 5 May 2006

DOI:https://doi.org/10.1103/PhysRevB.74.205321

©2006 American Physical Society

Authors & Affiliations

H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A. A. Quivy, and M. Razeghi*

  • Center for Quantum Devices,† Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, USA

  • *Electronic address: razeghi@ece.northwestern.edu
  • URL: http://cqd.ece.northwestern.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 74, Iss. 20 — 15 November 2006

Reuse & Permissions
Access Options

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×