Spin-orbit interaction in quantum dots in the presence of exchange correlations: An approach based on a good-spin basis of the universal Hamiltonian

Hakan E. Türeci and Y. Alhassid
Phys. Rev. B 74, 165333 – Published 31 October 2006

Abstract

We discuss the problem of spin-orbit interaction in a two-dimensional chaotic or diffusive quantum dot in the presence of exchange correlations. Spin-orbit scattering breaks spin rotation invariance, and in the crossover regime between different symmetries of the spin-orbit coupling, the problem has no closed solution. A conventional choice of a many-particle basis in a numerical diagonalization is the set of Slater determinants built from the single-particle eigenstates of the one-body Hamiltonian (including the spin-orbit terms). We develop a different approach based on the use of a good-spin many-particle basis that is composed of the eigenstates of the universal Hamiltonian in the absence of spin-orbit scattering. We introduce a complete labeling of this good-spin basis and use angular momentum algebra to calculate in closed form the matrix elements of the spin-orbit interaction in this basis. Spin properties, such as the ground-state spin distribution and the spin excitation function, can be directly calculated in this basis. Our approach is not limited to the spin-orbit coupling problem but can be applied to any perturbation that is added to the universal Hamiltonian.

    • Received 2 March 2006

    DOI:https://doi.org/10.1103/PhysRevB.74.165333

    ©2006 American Physical Society

    Authors & Affiliations

    Hakan E. Türeci and Y. Alhassid

    • Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520, USA

    Article Text (Subscription Required)

    Click to Expand

    References (Subscription Required)

    Click to Expand
    Issue

    Vol. 74, Iss. 16 — 15 October 2006

    Reuse & Permissions
    Access Options
    Author publication services for translation and copyediting assistance advertisement

    Authorization Required


    ×
    ×

    Images

    ×

    Sign up to receive regular email alerts from Physical Review B

    Log In

    Cancel
    ×

    Search


    Article Lookup

    Paste a citation or DOI

    Enter a citation
    ×