Stability of the quantum spin Hall effect: Effects of interactions, disorder, and Z2 topology

Cenke Xu and J. E. Moore
Phys. Rev. B 73, 045322 – Published 23 January 2006

Abstract

The stability to interactions and disorder of the quantum spin Hall effect (QSHE) proposed for time-reversal-invariant two-dimensional systems is discussed. The QSHE requires an energy gap in the bulk and gapless edge modes that conduct spin-up and spin-down excitations in opposite directions. When the number of Kramers pairs of edge modes is odd, certain one-particle scattering processes are forbidden due to a topological Z2 index. We show that in a many-body description, there are other scattering processes that can localize the edge modes and destroy the QSHE: the region of stability for both classes of models (even or odd number of Kramers pairs) is obtained explicitly in the chiral boson theory. For a single Kramers pair, the QSHE is stable to weak interactions and disorder, while for two Kramers pairs it is not; however, the two-pair case can be stabilized by either finite attractive or repulsive interactions. For the simplest case of a single pair of edge modes, it is shown that changing the screening length in an edge with screened Coulomb interactions can be used to drive a phase transition between the QSHE state and the ordinary insulator.

  • Figure
  • Figure
  • Received 23 August 2005

DOI:https://doi.org/10.1103/PhysRevB.73.045322

©2006 American Physical Society

Authors & Affiliations

Cenke Xu1 and J. E. Moore1,2

  • 1Department of Physics, University of California, Berkeley, California 94720, USA
  • 2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 73, Iss. 4 — 15 January 2006

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×