Reorientation transition in FenAu(100)

I. Reichl, A. Vernes, P. Weinberger, L. Szunyogh, and C. Sommers
Phys. Rev. B 71, 214416 – Published 22 June 2005

Abstract

Experimental investigations and theoretical magnetic anisotropy energy calculations show a reorientation transition of the magnetization in FenAu(100) from a normal-to-plane to an in-plane direction at about three monolayers of Fe. In the present paper the magneto-optical properties of this system are investigated theoretically by using the spin-polarized relativistic screened Korringa-Kohn-Rostoker method, the Kubo-Greenwood equation for finite photon frequencies, and a classical optical approach that takes into account all reflections and interferences. By varying the thickness of the Fe film, the reorientation of the ground-state magnetization is clearly traced as a strong decrease in the calculated Kerr rotation angles for oblique incidence of light. For all film thicknesses under consideration, it is found that by continuously varying the angle of the incident light the Kerr rotation angle reaches a maximum at an incidence of about 70°. In the case of normal incidence a direct proportionality of the Kerr angles to the normal component of the magnetization is demonstrated by changing the orientation of the magnetization. When relating Kerr angles as calculated for a set of angles between the surface normal and the orientation of the magnetization to the corresponding magnetic anisotropy energy a very compact description of the occurring reorientation transition can be given. Moreover, based on these data and using a simple phenomenological picture a qualitative description of the Kerr angles with respect to applied external fields is provided.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 3 February 2005

DOI:https://doi.org/10.1103/PhysRevB.71.214416

©2005 American Physical Society

Authors & Affiliations

I. Reichl, A. Vernes, and P. Weinberger

  • Center for Computational Materials Science, Vienna University of Technology, Gumpendorferstr. 1a, A-1060 Vienna, Austria

L. Szunyogh

  • Department of Theoretical Physics and Center for Applied Mathematics and Computational Physics, Budapest University of Technology and Economics, Budafoki út 8, H-1521 Budapest, Hungary and Center for Computational Materials Science, Vienna University of Technology, Gumpendorferstr. 1a, A-1060 Vienna, Austria

C. Sommers

  • Laboratoire de Physique des Solides, Université de Paris-Sud 91405 Orsay Cedex, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 71, Iss. 21 — 1 June 2005

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×