Lattice dynamics of NaAlH4 from high-temperature single-crystal Raman scattering and ab initio calculations: Evidence of highly stable AlH4 anions

E. H. Majzoub, K. F. McCarty, and V. Ozoliņš
Phys. Rev. B 71, 024118 – Published 31 January 2005

Abstract

Polarized Raman scattering on single crystals of has been used to determine the symmetry properties and frequencies of the Raman-active vibrational modes over the temperature range from 300 to 425 K, i.e., up to the melting point . Significant softening (by up to 6%) is observed in the modes involving rigid translations of cations and translations and librations of . Surprisingly, the data indicate mode softening of less than 1.5% for the Al- stretching and Al- bending modes of the anion. These results show that the anion remains a stable structural entity even near the melting point. First-principles linear response calculations of phonon mode frequencies are in reasonably good agreement with the Raman results. The phonon mode Grüneisen parameters, calculated using the quasiharmonic approximation, are found to be significantly higher for the translational and librational modes than for the Al- bending and stretching modes, but cannot account quantitatively for the dramatic softening observed near in the former two types of modes, suggesting an essentially anharmonic mechanism. The effect of zero-point vibrations on the calculated lattice parameters is found to be large (expansion by 1.2 and 1.5 % in the and parameters, respectively), as expected for a compound with many light elements. We discuss the implications of the observed mode softening for the kinetics of hydrogen release and hypothesize that breaking up the anions is the rate limiting step. The enhanced kinetics of absorption and desorption in Ti-doped powders is attributed to the effectiveness of Ti in promoting the breakup of the anions.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 26 August 2004
  • Accepted 21 October 2004

DOI:https://doi.org/10.1103/PhysRevB.71.024118

Authors & Affiliations

E. H. Majzoub and K. F. McCarty

  • Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, USA

V. Ozoliņš

  • Department of Materials Science and Engineering, University of California, Los Angeles, California 90095-1595, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 71, Iss. 2 — 1 January 2005

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×