Upper critical dimension in a quantum impurity model: Critical theory of the asymmetric pseudogap Kondo problem

Matthias Vojta and Lars Fritz
Phys. Rev. B 70, 094502 – Published 10 September 2004

Abstract

Impurity moments coupled to fermions with a pseudogap density of states display a quantum phase transition between a screened and a free moment phase upon variation of the Kondo coupling. We describe the universal theory of this transition for the experimentally relevant case of particle-hole asymmetry. The theory takes the form of a crossing between effective singlet and doublet levels, interacting with low-energy fermions. Depending on the pseudogap exponent, this interaction is either relevant or irrelevant under renormalization group transformations, establishing the existence of an upper-critical “dimension” in this impurity problem. Using perturbative renormalization group techniques we compute various critical properties and compare with numerical results.

  • Figure
  • Figure
  • Received 1 June 2004

DOI:https://doi.org/10.1103/PhysRevB.70.094502

©2004 American Physical Society

Authors & Affiliations

Matthias Vojta and Lars Fritz

  • Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, 76128 Karlsruhe, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 70, Iss. 9 — 1 September 2004

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×