Theoretical study of a three-dimensional all-sp2 structure

Michel Côté, Jeffrey C. Grossman, Marvin L. Cohen, and Steven G. Louie
Phys. Rev. B 58, 664 – Published 1 July 1998
PDFExport Citation

Abstract

We present a study of a highly symmetric crystal made of exclusively sp2 bonded atoms. Calculations of the structural and electronic properties are performed within the pseudopotential-density-functional approach for two different compositions made of (i) pure carbon and (ii) carbon and nitrogen compound. In both solids, one of the carbon-carbon bond lengths is found to be 1.35 Å, which is considerably smaller than any carbon-carbon bond length found in other carbon solids. The bulk moduli are calculated to be 241 and 286 GPa for the pure carbon and the carbon-nitride compounds, respectively. We demonstrate that the relatively low bulk moduli, considering the short bond lengths found in the structure, is due to the disruption of the carbon π bonding states. This is probably unavoidable when trying to form a three-dimensional structure out of a planar configuration like the sp2 bonds. The calculated density of states and band structures show that the pure carbon form is metallic whereas the carbon nitride is semiconducting. When carbon atoms are added to the interstitial regions, the carbon solid becomes insulating and the bulk modulus increases to 282 GPa.

  • Received 17 December 1997

DOI:https://doi.org/10.1103/PhysRevB.58.664

©1998 American Physical Society

Authors & Affiliations

Michel Côté, Jeffrey C. Grossman, Marvin L. Cohen, and Steven G. Louie

  • Department of Physics, University of California at Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

References (Subscription Required)

Click to Expand
Issue

Vol. 58, Iss. 2 — 1 July 1998

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×