Electronic Raman scattering in superconductors as a probe of anisotropic electron pairing

T. P. Devereaux and D. Einzel
Phys. Rev. B 51, 16336 – Published 1 June 1995; Erratum Phys. Rev. B 54, 15547 (1996)
PDFExport Citation

Abstract

A gauge-invariant theory for electronic Raman scattering for superconductors with anisotropic pairing symmetry is analyzed in detail. It is shown that Raman scattering in anisotropic superconductors provides a wealth of polarization-dependent information that probes the detailed angular dependence of the superconducting ground-state order parameter. The Raman spectra shows a unique polarization dependence for various anisotropic pair-state symmetries which affects the peak position of the spectra and generates symmetry-dependent low-frequency and temperature power laws that can be used to identify the magnitude and predominant symmetry of the energy gap. In particular, we calculate the collective modes and the subsequent symmetry-dependent Raman spectra for a dx2-y2 superconductor and compare our results to the relevant data on the cuprate systems as well as theoretical predictions for s-wave, anisotropic s-wave, and mixed-state energy gaps. Favorable agreement is shown with the predictions for dx2-y2 pairing and the experimental data on YBa2Cu3O7, Bi2Sr2CaCu2O8, and Tl2Ba2CuO6.

  • Received 23 January 1995

DOI:https://doi.org/10.1103/PhysRevB.51.16336

©1995 American Physical Society

Erratum

Authors & Affiliations

T. P. Devereaux

  • Department of Physics, University of California, Davis, California 95616

D. Einzel

  • Walther-Meissner-Institut für Tieftemperaturforschung, D-85748 Garching, Federal Republic of Germany

References (Subscription Required)

Click to Expand
Issue

Vol. 51, Iss. 22 — 1 June 1995

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×