Optical spectrum of a Hubbard chain

Pierre F. Maldague
Phys. Rev. B 16, 2437 – Published 15 September 1977
PDFExport Citation

Abstract

The optical absorption of the one-dimensional Hubbard model is calculated by three different methods. Linear chains of five atoms and rings of five and seven atoms containing four electrons are treated numerically. The infinite-chain problem is solved first in the t-matrix approximation of Lyo and Holstein. It is shown that in this approximation, most of the high-frequency absorption is due to a bound state which lies above the band continuum. Finally, the absorption is evaluated in the memory-function formalism of Götze and Wölfle, which reduces to ordinary perturbation theory at high frequency. The three approaches are in qualitative agreement, and the differences between them can be explained by the nature of the approximations involved. Applications to tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) and the platinum salt K2Pt(CN)4Br0.3 · 3H2O (KCP) are discussed.

  • Received 18 April 1977

DOI:https://doi.org/10.1103/PhysRevB.16.2437

©1977 American Physical Society

Authors & Affiliations

Pierre F. Maldague

  • IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

References (Subscription Required)

Click to Expand
Issue

Vol. 16, Iss. 6 — 15 September 1977

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×