Moiré band structures of the double twisted few-layer graphene

Miao Liang, Meng-Meng Xiao, Zhen Ma, and Jin-Hua Gao
Phys. Rev. B 105, 195422 – Published 18 May 2022

Abstract

Very recently, unconventional superconductivity has been observed in the double twisted trilayer graphene (TLG), where three monolayer graphene (MLG) is stacked on top of each other with two twist angles [J. M. Park et al., Nature (London) 590, 249 (2021); Z. Hao et al., Science 371, 1133 (2021); X. Zhang et al., Phys. Rev. Lett. 127, 166802 (2021)]. When some of the MLGs in the double twisted TLG are replaced by bilayer graphene (BLG), we get a family of double twisted moiré heterostructure, namely, double twisted few layer graphene (DTFLG). In this paper, we theoretically investigate the moiré band structures of the DTFLGs with diverse arrangements of MLG and BLG. We find that, depending on the relative rotation direction of the two twist angles (alternate or chiral twist) and the middle van der Waals (vdW) layer (MLG or BLG), a general (X + Y + Z)-DTFLG can be classified into four categories, i.e., (X + 1 + Z)-ATFLG, (X + 2 + Z)-ATFLG, (X + 1 + Z)-CTFLG, and (X + 2 + Z)-CTFLG, each of which has its own unique band structure. Here, X, Y, Z denote the three vdW layers, i.e., MLG or BLG. Interestingly, the (X + 1 + Z)-ATFLGs have a pair of perfect flat bands at the magic angle about 1.54 coexisting with a pair of linear or parabolic bands, which is quite like the double twisted TLG. Meanwhile, when the twist angle is smaller than a magic angle 1.70, the (X + 2 + Z)-CTFLGs can have two isolated narrow bands at Ef with bandwidth less than 5 meV. The influence of the electric field and the topological features of the moiré bands have been studied as well. Our paper indicates that the DTFLGs, especially (X + 1 + Z)-ATFLG and (X + 2 + Z)-CTFLG, are promising platforms to study the moiré flat band induced correlation and topological effects.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 31 December 2021
  • Revised 8 May 2022
  • Accepted 10 May 2022

DOI:https://doi.org/10.1103/PhysRevB.105.195422

©2022 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Miao Liang, Meng-Meng Xiao, Zhen Ma*, and Jin-Hua Gao

  • School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China

  • *mazhen@hust.edu.cn
  • jinhua@hust.edu.cn

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 19 — 15 May 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×