• Open Access

Magnon-phonon interaction and the underlying role of the Pauli exclusion principle

T. J. Sjöstrand and F. Aryasetiawan
Phys. Rev. B 105, 014433 – Published 26 January 2022

Abstract

The magnon-phonon interaction is receiving growing attention due to its key role in spin caloritronics and the emerging field of acoustic spintronics. At resonance, this magnetoelastic interaction forms magnon polarons, which underpin exotic phenomena such as magnonic heat currents and phononic spin, but is mostly investigated using mesoscopic spin-lattice models. Motivated to integrate the magnon-phonon interaction into first-principles many-body electronic structure theory, we set out to derive the exchange contribution, which is subtler than the spin-orbit contribution, using Schwinger functional derivatives. To avoid having to solve the famous Hedin-Baym equations self-consistently, the phonons are treated as perturbations to the electronic structure. A formalism based on imposing a crossing-symmetric electron-electron interaction is developed in order to treat charge and spin on equal footing to respect the Pauli exclusion principle. Due to spin conservation, the magnon-phonon interaction first enters to second order through the magnon-magnon interaction, which renormalizes the magnons. We show by iteration that the magnon-magnon interaction contains a “screened T matrix” term and an arguably more important term which, in the local-spin limit, enables first-principles phonon emission and absorption amplitudes, predicted by phenomenological magnetoelastic models. These terms are, respectively, of first and second order in the screened collective four-point interaction W—a crossing-symmetric analog of Hedin's W. Proof-of-principle results are presented at varying temperatures for an isotropic magnon spectrum in three dimensions in the presence of a flat optical phonon branch.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 2 November 2021
  • Accepted 12 January 2022
  • Corrected 5 December 2022

DOI:https://doi.org/10.1103/PhysRevB.105.014433

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Corrections

5 December 2022

Correction: The copyright license statement was presented incorrectly and has been fixed.

Authors & Affiliations

T. J. Sjöstrand and F. Aryasetiawan

  • Department of Physics, Division of Mathematical Physics, Lund University, Professorsgatan 1, 223 62 Lund, Sweden

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 105, Iss. 1 — 1 January 2022

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×