Classical and cubic Rashba effect in the presence of in-plane 4f magnetism at the iridium silicide surface of the antiferromagnet GdIr2Si2

S. Schulz, A. Yu. Vyazovskaya, G. Poelchen, A. Generalov, M. Güttler, M. Mende, S. Danzenbächer, M. M. Otrokov, T. Balasubramanian, C. Polley, E. V. Chulkov, C. Laubschat, M. Peters, K. Kliemt, C. Krellner, D. Yu. Usachov, and D. V. Vyalikh
Phys. Rev. B 103, 035123 – Published 15 January 2021
PDFHTMLExport Citation

Abstract

We present a combined experimental and theoretical study of the two-dimensional electron states at the iridium-silicide surface of the antiferromagnet GdIr2Si2 above and below the Néel temperature. Using angle-resolved photoemission spectroscopy (ARPES) we find a significant spin-orbit splitting of the surface states in the paramagnetic phase. By means of ab initio density-functional-theory (DFT) calculations we establish that the surface electron states that reside in the projected band gap around the M¯ point exhibit very different spin structures which are governed by the conventional and the cubic Rashba effect. The latter is reflected in a triple spin winding, i.e., the surface electron spin reveals three complete rotations upon moving once around the constant energy contours. Below the Néel temperature, our ARPES measurements show an intricate photoemission intensity picture characteristic of a complex magnetic domain structure. The orientation of the domains, however, can be clarified from a comparative analysis of the ARPES data and their DFT modeling. To characterize a single magnetic domain picture, we resort to the calculations and scrutinize the interplay of the Rashba spin-orbit coupling field with the in-plane exchange field, provided by the ferromagnetically ordered 4f moments of the near-surface Gd layer.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 31 August 2020
  • Revised 3 December 2020
  • Accepted 18 December 2020

DOI:https://doi.org/10.1103/PhysRevB.103.035123

©2021 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

S. Schulz1,*, A. Yu. Vyazovskaya2,3, G. Poelchen1,4, A. Generalov5, M. Güttler1, M. Mende1, S. Danzenbächer1, M. M. Otrokov6,7, T. Balasubramanian5, C. Polley5, E. V. Chulkov8,3,9,6,2, C. Laubschat1, M. Peters10, K. Kliemt10, C. Krellner10, D. Yu. Usachov3, and D. V. Vyalikh9,7

  • 1Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01069 Dresden, Germany
  • 2Tomsk State University, Lenina Avenue 36, 634050 Tomsk, Russia
  • 3St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
  • 4European Synchrotron Radiation Facility (ESRF), Avenue des Martyrs 71, 38043 Grenoble, France
  • 5Max IV Laboratory, Lund University, Box 118, 22100 Lund, Sweden
  • 6Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, 20018 San Sebastián/Donostia, Spain
  • 7IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
  • 8Departamento de Física de Materiales, Facultad de Ciencias Químicas, UPV/EHU, 20080 Donostia-San Sebastián, Basque Country, Spain
  • 9Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
  • 10Kristall- und Materiallabor, Physikalisches Institut, Goethe-Universität Frankfurt, Max-von-Laue Straße 1, 60438 Frankfurt am Main, Germany

  • *Corresponding author: susanne.schulz@tu-dresden.de

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 3 — 15 January 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×