• Editors' Suggestion

Comparing magnetic ground-state properties of the V- and Cr-doped topological insulator (Bi,Sb)2Te3

A. Tcakaev, V. B. Zabolotnyy, R. J. Green, T. R. F. Peixoto, F. Stier, M. Dettbarn, S. Schreyeck, M. Winnerlein, R. Crespo Vidal, S. Schatz, H. B. Vasili, M. Valvidares, K. Brunner, C. Gould, H. Bentmann, F. Reinert, L. W. Molenkamp, and V. Hinkov
Phys. Rev. B 101, 045127 – Published 27 January 2020

Abstract

An insulating ferromagnetic ground state is a fundamental prerequisite for the quantum anomalous Hall (QAH) effect observed in magnetically doped topological insulators such as (Bi,Sb)2Te3. So far, the QAH effect could only be induced by V and Cr doping, with V resulting in ferromagnetism with a higher TC and a more robust QAH state. To better understand the difference between the two dopants, we have investigated epitaxial V0.1Sb1.9Te3 and Cr0.1(Bi0.1Sb0.9)1.9Te3 films using x-ray absorption spectroscopy and x-ray magnetic circular dichroism. Our analysis of the V and Cr L2,3 spectra by multiplet ligand-field theory goes beyond existing studies by allowing several charge-transfer states. We find a strongly covalent ground state, dominated by the superposition of one and two Te-ligand-hole configurations, with a negligible contribution from ionic V3+ or Cr3+. Crucial for a comparison with theoretical models are the resulting d-shell fillings (ndV=3.47 and ndCr=4.33), and spin (mspinV=2.39μB and mspinCr=3.22μB) and orbital (morbV=0.55μB and morbCr=0.03μB) magnetic moments, with the total magnetic moments being in good agreement with published magnetometry results. Our findings indicate the importance of the Te 5p states for the ferromagnetism in (Bi,Sb)2Te3 and favor theories involving pd-exchange.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 8 August 2019
  • Revised 8 January 2020

DOI:https://doi.org/10.1103/PhysRevB.101.045127

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

A. Tcakaev1, V. B. Zabolotnyy1,*, R. J. Green2,3, T. R. F. Peixoto4, F. Stier1, M. Dettbarn1, S. Schreyeck5, M. Winnerlein5, R. Crespo Vidal4, S. Schatz4, H. B. Vasili6, M. Valvidares6, K. Brunner5, C. Gould5, H. Bentmann4, F. Reinert4, L. W. Molenkamp5, and V. Hinkov1,†

  • 1Experimentelle Physik IV and Röntgen Research Center for Complex Materials (RCCM), Fakultät für Physik und Astronomie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • 2Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
  • 3Department of Physics and Engineering Physics, University of Saskatchewan, Saskatchewan, Saskatoon, Canada S7N 5E2
  • 4Experimentelle Physik VII and Röntgen Research Center for Complex Materials (RCCM), Fakultät für Physik und Astronomie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • 5Institute for Topological Insulators and Physikalisches Institut, Experimentelle Physik III, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
  • 6ALBA Synchrotron Light Source, E-08290 Cerdanyola del Vallès, Barcelona, Spain

  • *Corresponding author: volodymyr.zabolotnyy@physik.uni-wuerzburg.de
  • Corresponding author: hinkov@physik.uni-wuerzburg.de

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 101, Iss. 4 — 15 January 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×