• Featured in Physics

Vertical Transistors with Conductive-Network Electrodes: A Physical Image and What It Tells

Chuan Liu, Zihao Chen, Kairong Huang, Sujuan Hu, Xiaoci Liang, and Jun Chen
Phys. Rev. Applied 13, 054066 – Published 27 May 2020
Physics logo See synopsis: Picturing How Vertical Transistors Work
PDFHTMLExport Citation

Abstract

Vertical transistors with conductive-network electrodes composed of carbon- or metal-based nanowires or meshes are attractive because of their high current density, low operational voltage, and high degree of integration. However, the devices lack concise physical images to understand the operations and explicit design rules to achieve the necessary performance, such as sharp subthreshold swing and a large on:off ratio. Here, we develop a device theory with concise physical images, which are generally applicable for devices with organic or inorganic semiconductors. The simplified solution of Poisson’s equation reveals that the electrostatic potential at the semiconductor-dielectric interface is controlled by both the gate and drain field, behaving like a plucked string. The spacing between electrodes and the capacitance ratio between semiconductors and dielectrics are critical for achieving strong gate tunability of the interfacial potential, and such gate tunability can be maximized to achieve a sharp turn-on property toward the Boltzmann limit in the subthreshold regime. Above the threshold, the conduction channels in devices with Schottky contacts can change from the “L type” to “I type”, or vice versa, during scanning and the current-voltage relations can be well described by modifying classical transistor equations. The derived theories and equations agree well with the numerically simulated devices and reported experiments, revealing the physical images and providing explicit rules for designing, fabricating, and characterizing such transistors.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 15 March 2020
  • Accepted 17 April 2020

DOI:https://doi.org/10.1103/PhysRevApplied.13.054066

© 2020 American Physical Society

Physics Subject Headings (PhySH)

General PhysicsCondensed Matter, Materials & Applied Physics

synopsis

Key Image

Picturing How Vertical Transistors Work

Published 27 May 2020

A new theory for vertical transistors provides visual representations of the voltages, currents, and electric potentials inside these advanced devices.

See more in Physics

Authors & Affiliations

Chuan Liu*, Zihao Chen, Kairong Huang, Sujuan Hu, Xiaoci Liang, and Jun Chen

  • State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China

  • *liuchuan5@mail.sysu.edu.cn

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 13, Iss. 5 — May 2020

Subject Areas
Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Applied

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×