• Open Access

Generating isolated terawatt-attosecond x-ray pulses via a chirped-laser-enhanced high-gain free-electron laser

Zhen Wang, Chao Feng, and Zhentang Zhao
Phys. Rev. Accel. Beams 20, 040701 – Published 4 April 2017

Abstract

A feasible method is proposed to generate isolated attosecond terawatt x-ray radiation pulses in high-gain free-electron lasers. In the proposed scheme, a frequency chirped laser pulse is employed to generate a gradually varied spacing current enhancement of the electron beam, and a series of spatiotemporal shifters are applied between the undulator sections to amplify a chosen ultrashort radiation pulse from self-amplified spontaneous emission. Three-dimensional start-to-end simulations have been carried out, and the calculation results demonstrated that 0.15 nm x-ray pulses with a peak power over 1 TW and a duration of several tens of attoseconds could be achieved by using the proposed technique.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 3 August 2016

DOI:https://doi.org/10.1103/PhysRevAccelBeams.20.040701

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Accelerators & Beams

Authors & Affiliations

Zhen Wang, Chao Feng*, and Zhentang Zhao

  • Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

  • *Corresponding author. fengchao@sinap.ac.cn

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 20, Iss. 4 — April 2017

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Accelerators and Beams

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×