• Open Access

Efficient twin aperture magnets for the future circular e+/e_ collider

A. Milanese
Phys. Rev. Accel. Beams 19, 112401 – Published 2 November 2016
An article within the collection: FCC 2016 Conference Edition

Abstract

We report preliminary designs for the arc dipoles and quadrupoles of the FCC-ee double-ring collider. After recalling cross sections and parameters of warm magnets used in previous large accelerators, we focus on twin aperture layouts, with a magnetic coupling between the gaps, which minimizes construction cost and reduces the electrical power required for operation. We also indicate how the designs presented may be further optimized so as to optimally address any further constraints related to beam physics, vacuum system, and electric power consumption.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 29 June 2016

DOI:https://doi.org/10.1103/PhysRevAccelBeams.19.112401

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Accelerators & Beams

Collections

This article appears in the following collection:

FCC 2016 Conference Edition

A collection of articles that expand upon original research presented at the Annual Workshop of the International Future Circular Collider (FCC) Collaboration to be held in Rome, Italy, 10th to 15th April 2016

Authors & Affiliations

A. Milanese

  • CERN-The European Organization for Nuclear Research, CH-1211 Geneva, Switzerland

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 19, Iss. 11 — November 2016

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Accelerators and Beams

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×