• Open Access

Transverse to longitudinal phase space coupling in an electron beam for suppression of microbunching instability

Dazhang Huang, Chao Feng, Haixiao Deng, Qiang Gu, and Zhentang Zhao
Phys. Rev. Accel. Beams 19, 100701 – Published 3 October 2016

Abstract

The microbunching instability developed during the beam compression process in the linear accelerator (LINAC) of a free-electron laser (FEL) facility has always been a problem that degrades the lasing performance, and even no FEL is able to be produced if the beam quality is destroyed too much by the instability. A common way to suppress the microbunching instability is to introduce extra uncorrelated energy spread by the laser heater that heats the beam through the interaction between the electron and laser beam, as what has been successfully implemented in the Linac Coherent Light Source and Fermi@Elettra. In this paper, a simple and effective scheme is proposed to suppress the microbunching instability by adding two transverse gradient undulators (TGU) before and after the magnetic bunch compressor. The additional uncorrelated energy spread and the density mixing from the transverse spread brought up by the first TGU results in significant suppression of the instability. Meanwhile, the extra slice energy spread and the transverse emittance can also be effectively recovered by the second TGU. The magnitude of the suppression can be easily controlled by varying the strength of the magnetic fields of the TGUs. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in the LINAC of an x-ray free-electron laser facility.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 26 April 2016

DOI:https://doi.org/10.1103/PhysRevAccelBeams.19.100701

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

  1. Physical Systems
Accelerators & Beams

Authors & Affiliations

Dazhang Huang, Chao Feng*, Haixiao Deng, Qiang Gu, and Zhentang Zhao

  • Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

  • *fengchao@sinap.ac.cn

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 19, Iss. 10 — October 2016

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Accelerators and Beams

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×