• Open Access

Propagation of elastic pressure waves in a beam window

T. R. Davenne and P. Loveridge
Phys. Rev. Accel. Beams 19, 093501 – Published 12 September 2016

Abstract

As particle accelerator beam power increases, stress on beam windows and targets increases. Many simulations are carried out to model the dynamic stresses that are induced in these critical components by near instantaneous beam heating. However while it is often easy to obtain simulation results there are few analytical solutions available to check the accuracy of simulation techniques. We follow the strand of several authors over the years who have offered analytical solutions to the classic problem of radial stress waves in a beam window. Many of these significant contributions have still had niggling issues with regard to resolving peak stress and limitations on the applied initial heating condition. We formulate an analytical expression for the radial pressure waves based on a Green’s function solution of Feynman’s wave equation. A complete analysis of the problem demonstrates that a hypothesis that beam induced pressure waves are composed of a static and transient component is indeed correct. The analytical expression is shown to give stable bounded solutions with easily determined peak stress levels. Finally a comparison between analytical expression and finite element analysis of the problem yields some general guidelines that should be adhered to for achieving accurate stress wave simulations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 27 May 2016

DOI:https://doi.org/10.1103/PhysRevAccelBeams.19.093501

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

  1. Physical Systems
Accelerators & Beams

Authors & Affiliations

T. R. Davenne* and P. Loveridge

  • Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, United Kingdom

  • *Corresponding author. tristan.davenne@stfc.ac.uk

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 19, Iss. 9 — September 2016

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Accelerators and Beams

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×