• Open Access

Using ac dipoles to localize sources of beam coupling impedance

N. Biancacci and R. Tomás
Phys. Rev. Accel. Beams 19, 054001 – Published 3 May 2016

Abstract

The beam coupling impedance is one of the main sources of beam instabilities and emittance blow up in circular accelerators. A refined machine impedance evaluation is therefore required in order to understand and model intensity dependent effects and instabilities that may limit the machine performance. For this reason, many impedance source localization techniques have been developed. In this work we present the impedance localization technique based on the observation of phase advance versus intensity at the beam position monitors using ac dipoles to force betatron oscillations. We present analytical formulas for the interpretation of measurements together with simulations to benchmark and illustrate the equations. Studies on the method accuracy for different Fourier transform algorithms are presented as well as first exploratory measurements performed in the LHC.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 14 January 2015

DOI:https://doi.org/10.1103/PhysRevAccelBeams.19.054001

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Accelerators & Beams

Authors & Affiliations

N. Biancacci and R. Tomás

  • CERN, 1211 Geneva, Switzerland

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 19, Iss. 5 — May 2016

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Accelerators and Beams

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×