Spontaneous forward Brillouin scattering in carbon disulfide

Ryan O. Behunin, Yi-Hsin Ou, and Khanh Kieu
Phys. Rev. A 99, 063826 – Published 20 June 2019

Abstract

In recent years, guided acoustic wave Brillouin scattering has become an important tool in photonics, serving as the basis for everything from new forms of information processing to silicon lasers. Due to low losses and long interaction lengths, fiber optic systems offer an intriguing platform to harness these guided-wave light-sound interactions. However, within typical fiber optic systems these interactions are exceedingly weak—requiring complex microstucturing to yield appreciable light-sound coupling. Here, we enhance this light-sound coupling by using a CS2-filled liquid core optical fiber. Owing to tight confinement of the optical and acoustic modes within the fiber core, as well as the large electrostrictive response of CS2, this system yields an unprecedented forward Brillouin gain for a fiber optic system. To demonstrate this physics, we measure multipeaked spontaneous forward Brillouin scattering power spectra, yielding information about the fiber geometry, material properties, and acousto-optic coupling strength. To interpret these data, we simulate the spontaneous Brillouin scattering power spectrum for this fiber system. These results reveal that hybridized acoustic excitations within the fiber core and cladding produce this characteristic multipeaked power spectrum. In the future, the large forward Brillouin coupling, long interaction lengths, and low losses of liquid-core fibers may enable new forms of distributed sensing, lasers with customizable emission, and physics including continuum optomechanical cooling.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 12 March 2019

DOI:https://doi.org/10.1103/PhysRevA.99.063826

©2019 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

Ryan O. Behunin

  • Department of Physics and Astronomy, Northern Arizona University, Flagstaff, Arizona 86011, USA

Yi-Hsin Ou and Khanh Kieu

  • College of Optical Sciences, University of Arizona, Tucson, Arizona 87521, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 99, Iss. 6 — June 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×