• Open Access

Grating mirror for diffraction of electrons

M. A. R. Krielaart and P. Kruit
Phys. Rev. A 98, 063806 – Published 5 December 2018

Abstract

The ability to imprint a phase pattern onto a coherent electron wave would find many applications in electron optics, in analogy to what is already possible with photons in light optics. Spatially dependent phase manipulation is achieved in transmission electron microscopy by passing the beam through a phase plate. However, in transmission mode this technique suffers from crystal imperfections and electron-matter interaction. If instead the electron wave is reflected of a spatially modulated potential, these difficulties can be circumvented. To demonstrate this principle, we consider here a periodic topological mirror structure that results in a sinusoidal plane of reflection for the incident electron. The reflection of the electron then takes place just above the physical mirror surface. Such “electron grating mirror” is expected to diffract the incident wave upon reflection by the introduced path length difference. The mirror can then be used as an electron beam splitter and coupler, analogous to semitransparent mirrors used in light optics. This enables for instance a lossless Mach-Zehnder interferometer for electrons. A numerical model that solves the Schrödinger equation for this system is obtained to enable a quantitative description of the grating mirror. The results show that the obtained diffraction order intensities behave like squared Bessel function of their respective order, and thus for instance the results show how an increase in grating pitch reduces the sensitivity to energy spread in the incident electron beam. Additionally, we show how the use of the WKB approximation enables faster calculations in the case of general patterns.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 9 August 2018
  • Revised 5 October 2018

DOI:https://doi.org/10.1103/PhysRevA.98.063806

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

General Physics

Authors & Affiliations

M. A. R. Krielaart* and P. Kruit

  • Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands

  • *m.a.r.krielaart@tudelft.nl

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 98, Iss. 6 — December 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×