Locally optimal control of continuous-variable entanglement

Francesco Albarelli, Uther Shackerley-Bennett, and Alessio Serafini
Phys. Rev. A 98, 062312 – Published 7 December 2018

Abstract

We consider a system of two bosonic modes each subject to the dynamics induced by a thermal Markovian environment and we identify instantaneous, local symplectic controls that minimize the loss of entanglement in the Gaussian regime. By minimizing the decrease of the logarithmic negativity at every instant in time, it will be shown that a nontrivial, finite amount of local squeezing helps to counter the effect of decoherence during the evolution. We also determine optimal control routines in the more restrictive scenario where the control operations are applied on only one of the two modes. We find that applying an instantaneous control only at the beginning of the dynamics, i.e., preparing an appropriate initial state, is the optimal strategy for states with symmetric correlations and when the dynamics is the same on both modes. More generally, even in asymmetric cases, the delayed decay of entanglement resulting from the optimal preparation of the initial state with no further action turns out to be always very close to the optimized control where multiple operations are applied during the evolution. Our study extends directly to “monosymmetric” systems of any number of modes, i.e., to systems that are invariant under any local permutation of the modes within any one partition, as they are locally equivalent to two-mode systems.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 30 November 2017
  • Revised 14 June 2018

DOI:https://doi.org/10.1103/PhysRevA.98.062312

©2018 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Francesco Albarelli1,2,3, Uther Shackerley-Bennett3, and Alessio Serafini3

  • 1Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
  • 2Quantum Technology Lab, Dipartimento di Fisica “Aldo Pontremoli”, Universitá degli Studi di Milano, I-20133 Milano, Italy
  • 3Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 98, Iss. 6 — December 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×