Testing atomic wave functions in the nuclear vicinity: The hyperfine structure with empirically deduced nuclear and quantum electrodynamic effects

J. S. M. Ginges and A. V. Volotka
Phys. Rev. A 98, 032504 – Published 13 September 2018

Abstract

Calculations of the magnetic hyperfine structure rely on the input of nuclear properties—nuclear magnetic moments and nuclear magnetization distributions—as well as quantum electrodynamic radiative corrections for high-accuracy evaluation in heavy atoms. The uncertainties associated with assumed values of these properties limit the accuracy of hyperfine calculations. For example, for the heavy alkali-metal atoms Cs and Fr, these uncertainties may amount collectively to almost 1% or 2%, respectively. In this paper, we propose a method for removing the dependence of hyperfine structure calculations on assumed values of nuclear magnetic moments and nuclear magnetization distributions by determining these effects empirically from measurements of the hyperfine structure for high states. The method is valid for s, p1/2, and p3/2 states of alkali-metal atoms and alkali-metal-like ions. We have shown that for s states, the dependence on QED effects may also be removed to high accuracy. The ability to probe the electronic wave functions, through hyperfine comparisons, with significantly increased accuracy is important for the analysis of atomic parity violation measurements, and it may enable the accuracy of atomic parity violation calculations to be improved. More broadly, it paves the way for further development of high-precision atomic many-body methods.

  • Figure
  • Received 4 July 2017
  • Revised 9 March 2018

DOI:https://doi.org/10.1103/PhysRevA.98.032504

©2018 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

J. S. M. Ginges1,2,* and A. V. Volotka3

  • 1School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia
  • 2Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney NSW 2006, Australia
  • 3Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany

  • *Corresponding author: j.ginges@uq.edu.au

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 98, Iss. 3 — September 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×