Multiple transparency windows and Fano interferences induced by dipole-dipole couplings

E. C. Diniz, H. S. Borges, and C. J. Villas-Boas
Phys. Rev. A 97, 043848 – Published 19 April 2018

Abstract

We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N=1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 21 September 2017

DOI:https://doi.org/10.1103/PhysRevA.97.043848

©2018 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

E. C. Diniz*, H. S. Borges, and C. J. Villas-Boas

  • Departamento de Física, Universidade Federal de São Carlos, P.O. Box 676, 13565-905, São Carlos, São Paulo, Brazil

  • *ediniz98@gmail.com
  • halyneborges@gmail.com
  • villasboas@ufscar.br

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 97, Iss. 4 — April 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×