• Open Access

Asymmetric lasing at spectral singularities

L. Jin
Phys. Rev. A 97, 033840 – Published 20 March 2018

Abstract

Scattering coefficients can diverge at spectral singularities. In such situation, the stationary solution becomes a laser solution with outgoing waves only. We explore a parity-time (PT)-symmetric non-Hermitian two-arm Aharonov-Bohm interferometer consisting of three coupled resonators enclosing synthetic magnetic flux. The synthetic magnetic flux does not break the PT symmetry, which protects the symmetric transmission. The features and conditions of symmetric, asymmetric, and unidirectional lasing at spectral singularities are discussed. We elucidate that lasing affected by the interference is asymmetric; asymmetric lasing is induced by the interplay between the synthetic magnetic flux and the system's non-Hermiticity. The product of the left and right transmissions is equal to that of the reflections. Our findings reveal that the synthetic magnetic flux affects light propagation, and the results can be applied in the design of lasing devices.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 18 January 2018

DOI:https://doi.org/10.1103/PhysRevA.97.033840

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsAtomic, Molecular & OpticalQuantum Information, Science & TechnologyGeneral Physics

Authors & Affiliations

L. Jin*

  • School of Physics, Nankai University, Tianjin 300071, China

  • *jinliang@nankai.edu.cn

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 97, Iss. 3 — March 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×