Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback

Xiang You, Zongyang Li, and Yongmin Li
Phys. Rev. A 96, 063811 – Published 8 December 2017

Abstract

A scheme to achieve strong quantum squeezing of a mechanical resonator in a membrane-in-the-middle optomechanical system is developed. To this end, simultaneous linear and nonlinear coupling between the mechanical resonator and the cavity modes is applied. A two-tone driving light field, comprising unequal red-detuned and blue-detuned sidebands, helps in generating a coherent feedback force through the linear coupling with the membrane resonator. Another driving light field with its amplitude modulated at twice the mechanical frequency drives the mechanical parametric amplification through a second-order coupling with the resonator. The combined effect produces strong quantum squeezing of the mechanical state. The proposed scheme is quite robust to excess second-order coupling observed in coherent feedback operations and can suppress the fluctuations in the mechanical quadrature to far below the zero point and achieve strong squeezing (greater than 10 dB) for realistic parameters.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 26 July 2017

DOI:https://doi.org/10.1103/PhysRevA.96.063811

©2017 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

Xiang You1, Zongyang Li1, and Yongmin Li1,2,*

  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

  • *yongmin@sxu.edu.cn

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 6 — December 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×