Proposal for a minimal surface code experiment

James R. Wootton, Andreas Peter, János R. Winkler, and Daniel Loss
Phys. Rev. A 96, 032338 – Published 27 September 2017

Abstract

Current quantum technology is approaching the system sizes and fidelities required for quantum error correction. It is therefore important to determine exactly what is needed for proof-of-principle experiments, which will be a major step towards fault-tolerant quantum computation. Here we propose a surface code based experiment that is the smallest, both in terms of code size and circuit depth, that would allow errors to be detected and corrected for both the X and Z bases of a qubit. This requires 17 physical qubits initially prepared in a product state, on which 16 two-qubit entangling gates are applied before a final measurement of all qubits. A platform agnostic error model is applied to give some idea of the noise levels required for success. It is found that a true demonstration of quantum error correction will require fidelities for the preparation and measurement of qubits and the entangling gates to be above 99%.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 14 March 2017

DOI:https://doi.org/10.1103/PhysRevA.96.032338

©2017 American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

James R. Wootton, Andreas Peter, János R. Winkler, and Daniel Loss

  • Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 3 — September 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×