• Open Access

Rotating Gaussian wave packets in weak external potentials

Arseni Goussev
Phys. Rev. A 96, 013617 – Published 14 July 2017

Abstract

We address the time evolution of two- and three-dimensional nonrelativistic Gaussian wave packets in the presence of a weak external potential of arbitrary functional form. The focus of our study is the phenomenon of rotation of a Gaussian wave packet around its center of mass, as quantified by mean angular momentum computed relative to the wave-packet center. Using a semiclassical approximation of the eikonal type, we derive an explicit formula for a time-dependent change of mean angular momentum of a wave packet induced by its interaction with a weak external potential. As an example, we apply our analytical approach to the scenario of a two-dimensional quantum particle crossing a tilted ridge potential barrier. In particular, we demonstrate that the initial orientation of the particle wave packet determines the sense of its rotation, and report a good agreement between analytical and numerical results.

  • Figure
  • Figure
  • Figure
  • Received 19 March 2017

DOI:https://doi.org/10.1103/PhysRevA.96.013617

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

General Physics

Authors & Affiliations

Arseni Goussev

  • Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 96, Iss. 1 — July 2017

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×