Force sensors with precision beyond the standard quantum limit

Peter A. Ivanov
Phys. Rev. A 94, 022330 – Published 24 August 2016

Abstract

We propose force sensing protocols using a linear ion chain which can operate beyond the quantum standard limit. We show that oscillating forces that are off resonance with the motional trap frequency can be detected very efficiently by using quantum probes represented by various spin-boson models. We demonstrate that the temporal evolution of a quantum probe described by the Dicke model can be mapped on the nonlinear Ramsey interferometry which allows us to detect far-detuned forces simply by measuring the collective spin populations. Moreover, we show that the measurement uncertainty can reach the Heisenberg limit by using initial spin-correlated states, instead of motional entangled states. An important advantage of the sensing technique is its natural robustness against the thermally induced dephasing, which extends the coherence time of the measurement protocol. Furthermore, we introduce a sensing scheme that utilizes the strong spin-phonon coupling to improve the force estimation. We show that for a quantum probe represented by the quantum Rabi model the force sensitivity can overcome the one achieved by the simple harmonic oscillator force sensor.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 23 June 2016

DOI:https://doi.org/10.1103/PhysRevA.94.022330

©2016 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & OpticalQuantum Information, Science & Technology

Authors & Affiliations

Peter A. Ivanov

  • Department of Physics, St. Kliment Ohridski University of Sofia, James Bourchier 5 blvd, 1164 Sofia, Bulgaria

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 2 — August 2016

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×