• Editors' Suggestion

Atomic loss and gain as a resource for nonequilibrium phase transitions in optical lattices

B. Everest, M. Marcuzzi, and I. Lesanovsky
Phys. Rev. A 93, 023409 – Published 9 February 2016

Abstract

Recent breakthroughs in the experimental manipulation of strongly interacting atomic Rydberg gases in lattice potentials have opened an avenue for the study of many-body phenomena. Considerable efforts are currently being undertaken to achieve clean experimental settings that show a minimal amount of noise and disorder and are close to zero temperature. A complementary direction investigates the interplay between coherent and dissipative processes. Recent experiments have revealed a glimpse into the emergence of a rich nonequilibrium behavior stemming from the competition of laser excitation, strong interactions, and radiative decay of Rydberg atoms. The aim of the present theoretical work is to show that local incoherent loss and gain of atoms can in fact be the source of interesting out-of-equilibrium dynamics. This perspective opens up paths for the exploration of nonequilibrium critical phenomena and, more generally, phase transitions, some of which so far have been rather difficult to study. To demonstrate the richness of the encountered dynamical behavior we consider here three examples. The first two feature local atom loss and gain together with an incoherent excitation of Rydberg states. In this setting either a continuous or a discontinuous phase transition emerges with the former being reminiscent of genuine nonequilibrium transitions of stochastic processes with multiple absorbing states. The third example considers the regime of coherent laser excitation. Here the many-body dynamics is dominated by an equilibrium transition of the “model A” universality class.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 28 July 2015

DOI:https://doi.org/10.1103/PhysRevA.93.023409

©2016 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

B. Everest, M. Marcuzzi, and I. Lesanovsky

  • School of Physics and Astronomy, The University of Nottingham, Nottingham NG7 2RD, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 93, Iss. 2 — February 2016

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×