Relativistic calculation of the electron-momentum shift in tunneling ionization

I. A. Ivanov
Phys. Rev. A 91, 043410 – Published 15 April 2015

Abstract

We describe a procedure for the solution of the time-dependent Dirac equation. The procedure is based on the relativistic generalization of the matrix iteration method. We use this procedure to study electron-momentum distribution along the laser-beam propagation direction for the process of the tunneling ionization of a hydrogen atom. We found, in agreement with the experimental observations [C. T. L. Smeenk, L. Arissian, B. Zhou, A. Mysyrowicz, D. M. Villeneuve, A. Staudte, and P. B. Corkum, Phys. Rev. Lett. 106, 193002 (2011)], that relativistic effects lead to appreciable deviation of the distribution from the strict left-right symmetry present in the nonrelativistic case. The expectation value of the momentum along the laser-beam propagation direction grows linearly with intensity and follows closely the behavior of the expectation value of the kinetic energy divided by the speed of light. These features agree with the experimental results [C. T. L. Smeenk, L. Arissian, B. Zhou, A. Mysyrowicz, D. M. Villeneuve, A. Staudte, and P. B. Corkum, Phys. Rev. Lett. 106, 193002 (2011)].

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 3 March 2015

DOI:https://doi.org/10.1103/PhysRevA.91.043410

©2015 American Physical Society

Authors & Affiliations

I. A. Ivanov*

  • Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712, Republic of Korea

  • *Igor.Ivanov@anu.edu.au

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 4 — April 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×