Angular asymmetry and attosecond time delay from the giant plasmon resonance in C60 photoionization

T. Barillot, C. Cauchy, P.-A. Hervieux, M. Gisselbrecht, S. E. Canton, P. Johnsson, J. Laksman, E. P. Mansson, J. M. Dahlström, M. Magrakvelidze, G. Dixit, M. E. Madjet, H. S. Chakraborty, E. Suraud, P. M. Dinh, P. Wopperer, K. Hansen, V. Loriot, C. Bordas, S. Sorensen, and F. Lépine
Phys. Rev. A 91, 033413 – Published 26 March 2015

Abstract

This combined experimental and theoretical study demonstrates that the surface plasmon resonance in C60 alters the valence photoemission quantum phase, resulting in strong effects in the photoelectron angular distribution and emission time delay. Electron momentum imaging spectroscopy is used to measure the photoelectron angular distribution asymmetry parameter that agrees well with our calculations from the time-dependent local density approximation (TDLDA). Significant structure in the valence photoemission time delay is simultaneously calculated by TDLDA over the plasmon active energies. Results reveal a unified spatial and temporal asymmetry pattern driven by the plasmon resonance and offer a sensitive probe of electron correlation. A semiclassical approach facilitates further insights into this link that can be generalized and applied to other molecular systems and nanometer-sized metallic materials exhibiting plasmon resonances.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 6 March 2014
  • Revised 23 October 2014

DOI:https://doi.org/10.1103/PhysRevA.91.033413

©2015 American Physical Society

Authors & Affiliations

T. Barillot1, C. Cauchy1, P.-A. Hervieux2, M. Gisselbrecht3, S. E. Canton4, P. Johnsson3, J. Laksman3, E. P. Mansson3, J. M. Dahlström5, M. Magrakvelidze6, G. Dixit7, M. E. Madjet8, H. S. Chakraborty6, E. Suraud9, P. M. Dinh9, P. Wopperer9, K. Hansen10, V. Loriot1, C. Bordas1, S. Sorensen3, and F. Lépine1

  • 1Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, 10 rue Ada Byron, 69622 Villeurbanne cCdex, France
  • 2Institut de Physique et Chimie des Matériaux de Strasbourg, 23 rue du Loess, Boite postale (BP) 43, 67034 Strasbourg Cedex 2, France.
  • 3Department of Physics, Lund University, Box 118, 221 00 Lund, Sweden
  • 4Department of Synchrotron Radiation Instrumentation, Lund University, Box 118, 221 00 Lund, Sweden
  • 5Department of Physics, Stockholm University, Alba Nova University Centrum, S-106 91, Stockholm, Sweden
  • 6Department of Natural Sciences, Center for Innovation and Entrepreneurship, Northwest Missouri State University, Maryville, Missouri 64468, USA
  • 7Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, Germany
  • 8Qatar Energy and Environment Research Institute (QEERI), Post Office Box 5825, Doha, Qatar
  • 9Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, Université Paul Sabatier (UPS), F-31062, France and Conseil National de la Recherche Scientifique (CNRS), F-31062 Toulouse, France.
  • 10Department of Physics University of Gothenburg SE-41296 Gothenburg, Sweden

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 3 — March 2015

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×