Elimination of the asymptotic fractional dissociation problem in Kohn-Sham density-functional theory using the ensemble-generalization approach

Eli Kraisler and Leeor Kronik
Phys. Rev. A 91, 032504 – Published 17 March 2015
PDFHTMLExport Citation

Abstract

Many approximations within density-functional theory spuriously predict that a many-electron system can dissociate into fractionally charged fragments. Here, we revisit the case of dissociated diatomic molecules, known to exhibit this problem when studied within standard approaches, including the local spin-density approximation (LSDA). By employing our recently proposed [E. Kraisler and L. Kronik, Phys. Rev. Lett. 110, 126403 (2013)] ensemble generalization we find that asymptotic fractional dissociation is eliminated in all systems examined, even if the underlying exchange correlation (xc) is still the LSDA. Furthermore, as a result of the ensemble-generalization procedure, the Kohn-Sham potential develops a spatial step between the dissociated atoms, reflecting the emergence of the derivative discontinuity in the xc energy functional. This step, predicted in the past for the exact Kohn-Sham potential and observed in some of its more advanced approximate forms, is a desired feature that prevents any fractional charge transfer between the system's fragments. It is usually believed that simple xc approximations such as the LSDA cannot develop this step. Our findings show, however, that ensemble generalization to fractional electron densities automatically introduces the desired step even to the most simple approximate xc functionals and correctly predicts asymptotic integer dissociation.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 November 2014

DOI:https://doi.org/10.1103/PhysRevA.91.032504

©2015 American Physical Society

Authors & Affiliations

Eli Kraisler and Leeor Kronik

  • Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 3 — March 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×