Multipartite model of evaporative cooling in optical dipole traps

Matthew J. Williams and Chad Fertig
Phys. Rev. A 91, 023432 – Published 27 February 2015

Abstract

We propose and study a model of forced evaporation of atomic clouds in crossed-beam optical dipole traps that explicitly includes the growth of a population in the “wings” of the trap and its subsequent impact on dimple temperature and density. It has long been surmised that a large wing population is an impediment to the efficient production of Bose-Einstein condensates in crossed-beam traps. Understanding the effect of the wings is particularly important for λ=1.06μm traps, for which a large ratio of Rayleigh range to beam waist results in wings that are large in volume and extend far from the dimple. Key ingredients to our model's realism are (1) our explicit treatment of the nonthermal, time-dependent energy distribution of wing atoms in the full anharmonic potential and (2) our accurate estimations of transition rates among dimple, wing, and free-atom populations, obtained with Monte Carlo simulations of atomic trajectories. We apply our model to trap configurations in which neither, one, or both of the wing potentials are made unbound by applying a “tipping” gradient. We find that forced evaporation in a trap with two bound wing potentials produces a large wing population which can collisionally heat the dimple so strongly as to preclude reaching quantum degeneracy. Evaporation in a trap with one unbound wing, such as that made by crossing one vertical beam and one horizontal beam, also leads to a persistent wing population which dramatically degrades the evaporation process. However, a trap with both wings tilted so as to be just unbound enjoys a nearly complete recovery of efficient evaporation. By introducing to our physical model an ad hoc, tunable escape channel for wing atoms, we study the effect of partially filled wings, finding that a wing population caused by single-beam potentials can drastically slow down evaporative cooling and increase the sensitivity to the choice of η.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 18 September 2014

DOI:https://doi.org/10.1103/PhysRevA.91.023432

©2015 American Physical Society

Authors & Affiliations

Matthew J. Williams* and Chad Fertig

  • Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA

  • *Author to whom correspondence should be addressed: mjw532@uga.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 2 — February 2015

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×