Dynamical-decoupling noise spectroscopy at an optimal working point of a qubit

Łukasz Cywiński
Phys. Rev. A 90, 042307 – Published 6 October 2014

Abstract

I present a theory of environmental noise spectroscopy via dynamical decoupling of a qubit at an optimal working point. Considering a sequence of n pulses and pure dephasing due to quadratic coupling to Gaussian distributed noise ξ(t), I use the linked-cluster (cumulant) expansion to calculate the coherence decay. Solutions allowing for reconstruction of spectral density of noise are given. For noise with correlation time shorter than the time scale on which coherence decays, the noise filtered by the dynamical decoupling procedure can be treated as effectively Gaussian at large n, and well-established methods of noise spectroscopy can be used to reconstruct the spectrum of ξ2(t) noise. On the other hand, for noise of dominant low-frequency character (1/fβ noise with β>1), an infinite-order resummation of the cumulant expansion is necessary, and it leads to an analytical formula for coherence decay having a power-law tail at long times. In this case, the coherence at time t depends both on spectral density of ξ(t) noise at ω=nπ/t, and on the effective low-frequency cutoff of the noise spectrum, which is typically given by the inverse of the data acquisition time. Simulations of decoherence due to purely transverse noise show that the analytical formulas derived in this paper apply in this often encountered case of an optimal working point, provided that the number of pulses is not very large, and that the longitudinal qubit splitting is much larger than the transverse noise amplitude.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 14 August 2013

DOI:https://doi.org/10.1103/PhysRevA.90.042307

©2014 American Physical Society

Authors & Affiliations

Łukasz Cywiński*

  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, PL 02-668 Warszawa, Poland

  • *lcyw@ifpan.edu.pl

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 4 — October 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×