Transverse-electron-momentum distribution in pump-probe sequential double ionization

A. S. Kheifets and I. A. Ivanov
Phys. Rev. A 90, 033404 – Published 5 September 2014

Abstract

We study the transverse-electron-momentum distribution (TEMD) of the wave packets launched in a pump-probe sequential double ionization from the valence shell of a noble gas atom. Our calculations, based on an accurate numerical solution of the time-dependent Schrödinger equation (TDSE), reproduce a characteristic cusp of the TEMD which is attributed to the Coulomb singularity. The evolution of the TEMD with the time delay between the pump and probe pulses is shown to be similar to the prediction of the standard tunneling formula (TF), as was observed experimentally for argon by Fechner et al. [Phys. Rev. Lett. 112, 213001 (2014)]. However, TDSE calculations show a clear deviation from the TF and predict a much more complicated structure which cannot be reproduced by the target orbital momentum profile filtered by the tunneling Gaussian. The accuracy of the TF can be improved if the target momentum profile is calculated with the Coulomb waves instead of the plane waves.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 16 July 2014

DOI:https://doi.org/10.1103/PhysRevA.90.033404

©2014 American Physical Society

Authors & Affiliations

A. S. Kheifets* and I. A. Ivanov

  • Research School of Physical Sciences, The Australian National University, Canberra ACT 0200, Australia

  • *A.Kheifets@anu.edu.au
  • Igor.Ivanov@anu.edu.au

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 3 — September 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×