Stochastic projected Gross-Pitaevskii equation for spinor and multicomponent condensates

Ashton S. Bradley and P. Blair Blakie
Phys. Rev. A 90, 023631 – Published 26 August 2014

Abstract

A stochastic Gross-Pitaevskii equation is derived for partially condensed Bose gas systems subject to binary contact interactions. The theory we present provides a classical-field theory suitable for describing dissipative dynamics and phase transitions of spinor and multicomponent Bose gas systems composed of an arbitrary number of distinct interacting Bose fields. A class of dissipative processes involving distinguishable particle interchange between coherent and incoherent regions of phase space is identified. The formalism and its implications are illustrated for two-component mixtures and spin-1 Bose-Einstein condensates. For systems composed of atoms of equal mass, with thermal reservoirs that are close to equilibrium, the dissipation rates of the theory are reduced to analytical expressions that may be readily evaluated. The unified treatment of binary contact interactions presented here provides a theory with broad relevance for quasiequilibrium and far-from-equilibrium Bose-Einstein condensates.

  • Figure
  • Figure
  • Received 6 June 2014

DOI:https://doi.org/10.1103/PhysRevA.90.023631

©2014 American Physical Society

Authors & Affiliations

Ashton S. Bradley and P. Blair Blakie

  • Jack Dodd Center for Quantum Technology, Department of Physics, University of Otago, Dunedin, New Zealand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 2 — August 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×