Field-induced orbital distortion in high-order-harmonic generation from aligned and oriented molecules within adiabatic strong-field approximation

Maciej Dominik Śpiewanowski and Lars Bojer Madsen
Phys. Rev. A 89, 043407 – Published 10 April 2014

Abstract

We describe high-order-harmonic generation (HHG) within the adiabatic strong-field approximation (ASFA) where the ground state and its energy adiabatically follows the instantaneous external field and within the Stark-shift-corrected SFA (SSFA), where only the energy shift is accounted for. We show that the molecular polarizability reflects the significance of field-induced orbital distortion in the HHG process. We show that for CO2, which possesses a relatively low polarizability, the two-center interference minimum can be clearly seen in both the ASFA and the SSFA. This finding is in agreement with experimental data at large wavelength. Moreover, we introduce a method for analyzing the recombination events. This method relies on averaging the recombination matrix elements weighted with the photon emission probability of each harmonic. In the case of CO2 this method confirms that the interference minimum is determined by recombination to the two O atoms. We use the example of N2O, which has a moderate polarizability, to show that the number of centers taking part in the creation of the interference minimum may change depending on the intensity. Finally, we show that in the short-pulse limit, the minimum in the HHG spectrum from oriented N2O strongly depends on the molecular orientation and carrier-envelope phase.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
7 More
  • Received 3 July 2013
  • Revised 22 November 2013

DOI:https://doi.org/10.1103/PhysRevA.89.043407

©2014 American Physical Society

Authors & Affiliations

Maciej Dominik Śpiewanowski and Lars Bojer Madsen

  • Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 4 — April 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×