Nonadiabatic couplings and gauge-theoretical structure of curved quantum waveguides

J. Stockhofe and P. Schmelcher
Phys. Rev. A 89, 033630 – Published 24 March 2014

Abstract

We investigate the quantum mechanics of a single particle constrained to move along an arbitrary smooth reference curve by a confinement that is allowed to vary along the waveguide. The Schrödinger equation is evaluated in the adapted coordinate frame and a transverse-mode decomposition is performed, taking into account both curvature and torsion effects and the possibility of a cross-section potential that changes along the curve in an arbitrary way. We discuss the adiabatic structure of the problem, and examine nonadiabatic couplings that arise due to the curved geometry, the varying transverse profile, and their interplay. The exact multimode matrix Hamiltonian is taken as the natural starting point for few-mode approximations. Such approximate equations are provided, and it is worked out how these recover known results for twisting waveguides and can be applied to other types of waveguide designs. The quantum waveguide Hamiltonian is recast into a form that clearly illustrates how it generalizes the Born-Oppenheimer Hamiltonian encountered in molecular physics. In analogy to the latter, we explore the local gauge structure inherent to the quantum waveguide problem and suggest the usefulness of diabatic states, giving an explicit construction of the adiabatic-to-diabatic basis transformation.

  • Figure
  • Received 27 November 2013

DOI:https://doi.org/10.1103/PhysRevA.89.033630

©2014 American Physical Society

Authors & Affiliations

J. Stockhofe1,* and P. Schmelcher1,2

  • 1Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
  • 2The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

  • *jstockho@physnet.uni-hamburg.de

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 3 — March 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×